Orthomodular Lattices of Subspaces Obtained from Quadratic Forms

J. C. Carréga and R. Mayet¹

We give a structure Theorem about the irreducible and 3-homogeneous subalgebras of $T(E, \varphi)$. In particular, these subalgebras are all of the form $T(E', \varphi')$ where E' is a 3-dimensional subspace of *E*, if *E* is regarded as a vector space over a subfield *K* of *K*, and φ' is induced by φ .

This structure Theorem allows us to achieve an old project, concerning minimal orthomodular lattices (an orthomodular lattice *L* is called minimal if it is nonmodular and if all its proper subalgebras are either modular, or isomorphic to *L*).

KEY WORDS: Orthomodular lattice; quadratic space; polarity; variety.

1. THE MODULAR LATTICE $L(E, \varphi)$

Let *K* be any field of characteristic different from 2 and 3.

Let *E* be a 3-dimensional vector space over *K*.

Let $\varphi : E \times E \to K$ be a non singular symmetric bilinear form and $Q : E \to$ *K* the quadratic form associated to φ .

Two vectors u, v in E are said to be φ -orthogonal, which is denoted by $u \perp v$, if $\varphi(u, v) = 0$. For any subspace *M* of *E*, the set $\{u \in E | \forall v \in M, u \perp v\}$ is a subspace of *E* denoted by M^{\perp} .

We denote by $L(E, \varphi)$ the modular lattice of all subspaces of E equipped with the map $M \mapsto M^{\perp}$.

The elements of $L(E, \varphi)$ are $\{0\}, E$, the 1-dimensional subspaces $K u$ (atoms of $L(E, \varphi)$), and the 2-dimensional subspaces $(Ku)^{\perp}$ (co-atoms of $L(E, \varphi)$).

The modular lattice $L(E, \varphi)$ is a projective plane, and the map $M \mapsto M^{\perp}$ is the polarity with respect to a conic.

Being given a field *K* of characteristic different from 2 and 3, a 3-dimensional vector space *E* over *K*, and a nonsingular symmetric bilinear form φ over *E*, we define a structure of orthomodular lattice $T(E, \varphi)$ on the set of all nonisotropic subspaces of *E*.

¹ Institut Girard Desargues, UMR 5028 du CNRS, Université Lyon 1, 69622 Villeurbanne Cedex, France.

The lattice operations on $L(E, \varphi)$ are defined by:

$$
Sup_L(M_1, M_2) = M_1 + M_2
$$

$$
Inf_L(M_1, M_2) = M_1 \cap M_2
$$

The polarity $M \mapsto M^{\perp}$ is (by definition) involutive and decreasing. It follows that the de Morgan laws are satisfied in $L(E, \varphi)$:

$$
(M_1 + M_2)^{\perp} = M_1^{\perp} \cap M_2^{\perp}
$$

$$
(M_1 \cap M_2)^{\perp} = M_1^{\perp} + M_2^{\perp}
$$

2. THE ORTHOMODULAR LATTICE $T(E, \varphi)$

In the general case, the polarity $M \mapsto M^{\perp}$ is not an orthocomplementation on the lattice $L(E, \varphi)$, since some subspaces *M* can be isotropic. Let us remind the definition of an isotropic subspace.

A nonzero vector $u \in E$ is called isotropic if $Q(u) = 0$.

A subspace $M \in L(E, \varphi)$ is called isotropic if it is nonzero and the restriction of φ to *M* × *M* is singular, that is to say if $M \cap M^{\perp} \neq \{0\}.$

Actually, a subspace *M* of $L(E, \varphi)$ is isotropic if either it is of the form $K\omega$ where ω is an isotropic vector, or of the form $(K\omega)^{\perp}$ where ω is isotropic.

We note that if *M* is an atom (resp. a co-atom) of $L(E, \varphi)$, then *M* is isotropic if and only if $M \subseteq M^{\perp}$ (resp. $M^{\perp} \subseteq M$).

Let us denote by $T(E, \varphi)$ the set of all nonisotropic subspaces of *E*. In the general case, the set $T(E, \varphi)$ is not a sublattice of $L(E, \varphi)$. However, when ordered by inclusion, it is a lattice whose operations are defined as follows :

$$
M_1 \vee M_2 = \begin{cases} M_1 + M_2 & \text{if } M_1 + M_2 \text{ is nonisotropic} \\ E & \text{if } M_1 + M_2 \text{ is isotropic} \end{cases}
$$

$$
M_1 \wedge M_2 = \begin{cases} M_1 \cap M_2 & \text{if } M_1 \cap M_2 \text{ is nonisotropic} \\ \{0\} & \text{if } M_1 \cap M_2 \text{ is isotropic} \end{cases}
$$

Moreover, the map $M \mapsto M^{\perp}$ is an orthocomplementation on $T(E, \varphi)$, and, in particular, the de Morgan laws are satisfied in $T(E, \varphi)$.

Lemma 2.1.

- 1. *Each plane in* $L(E, \varphi)$ *contains at least six atoms and contains at most two isotropic atoms.*
- 2. Each nonisotropic atom of $L(E, \varphi)$ is contained at least in four non*isotropic planes.*

Proof:

1. Since the characteristic of *K* is different from 2 and 3, the cardinality of *K* is at least 5, hence each 2-dimensional subspace of *E* contains at least six 1-dimensional subspaces.

Let *P* be a plane (i.e., a 2-dimensional subspace) of *E*. Assume that each element of *P* is isotropic. Then, from the identity $Q(u + v) =$ $Q(u) + Q(v) + 2\varphi(u, v)$, it follows that any $u \in P$ belongs to P^{\perp} , hence, as P^{\perp} is 1-dimensional, $K u = P^{\perp}$, which is a contradiction. It follows that there exists at least one nonisotropic atom in *P*.

Let $K u$ be a nonisotropic atom in P , and let v be a vector in P which is not colinear with *u*. For each atom $Kw \neq Ku$ in *P*, there exists a unique $\lambda \in K$ such that $Kw = K(\lambda u + v)$. This atom Kw is isotropic iff $Q(\lambda u + v) = \lambda^2 Q(u) + 2\lambda \varphi(u, v) + Q(v) = 0$. This equation has at most two solutions, hence there exists at most two isotropic atoms in *P*.

2. Let *K u* be a nonisotropic atom in *L*. The map $P \mapsto P^{\perp}$ is one-to-one from the set of all nonisotropic planes containing *K u* onto the set of nonisotropic atoms in $(Ku)^{\perp}$. It follows from 1. that there exist at least four nonisotropic planes containing the atom Ku.

Theorem 2.2.

- 1. $(T(E, \varphi), \subseteq, \bot)$ *is an orthomodular lattice.*
- 2. *The following are equivalent:*
	- *a*) $T(E, \varphi)$ *is modular*
	- *b*) $T(E, \varphi) = L(E, \varphi)$
	- *c) the bilinear form* ϕ *is anisotropic* (*in other words, it admits none isotropic vector*)*.*
- 3. *The orthomodular lattice T* (*E*, ϕ) *is irreducible and* 3*-homogeneous* (*this means that each of its blocks has exactly* 3 *atoms*)*.*

Proof:

1. J. Flachsmeyer (1995) has proved (in the more general case where *E* is any finite dimensional vector space over *K*), that $T(E, \varphi)$ is an orthomodular poset. However, let us give the proof in this particular case. We need only prove that if *u*, *v* are nonzero and nonisotropic vectors of *E*, $K u \subset (K v)^{\perp}$ implies $(Ku)^{\perp} \wedge (Kv)^{\perp} \neq 0$. This is equivalent to : $u \perp v$ implies that $K u + K v$ is not isotropic.

Assume that $u \perp v$ and $K u + K v$ is isotropic. Then there exists an isotropic vector ω such that $\omega \perp u$ and $\omega \perp v$, hence both *u* and ω belong

 \Box

to $(Kv)^{\perp} \cap (K\omega)^{\perp}$ which is 1-dimensional. We obtain that *u* and ω are colinear, hence a contradiction since ω is isotropic and u is not isotropic.

2. It is obvious that b) implies a) and that b) and c) are equivalent.

In order to prove that a) implies b), assume $T(E, \varphi) \neq L(E, \varphi)$, and let us prove that $T(E, \varphi)$ is not modular. There exists an isotropic vector ω in *E*. By the Lemma above, there exist two nonisotropic atoms *K u*, *K v* in the plane $(K\omega)^{\perp}$, and there exists a nonisotropic plane *P* such that $Ku \subseteq P$ and $Kv \nsubseteq P$. Then we have $Ku \subset P$, $(Ku \vee Kv) \wedge P = E \wedge P = P$, and $K u \vee (K v \wedge P) = K u \vee \{0\} = K u \neq P$, which shows that $T(E, \varphi)$ is not modular.

3. It follows from the previous Lemma that a 2-dimensional subspace of *E* is not an atom of $T(E, \varphi)$, hence any atom of $T(E, \varphi)$ is 1-dimensional. Now, let *B* be the set of all atoms of a block of $T(E, \varphi)$. Then, the elements of *B* are 1-dimensional subspaces of *E*, pairwise orthogonal, whose supremum in $T(E, \varphi)$ is *E*. By the part 1. of this proof, if $K u$ and $K v$ are two atoms of *B*, then $K u + K v$ is nonisotropic, hence $K u \vee K v = K u + K v$ is 2-dimensional. This shows that *B* cannot be 2-element and, as *E* is 3-dimensional, it follows that *B* is 3-element.

As $T(E, \varphi)$ is of height 3, if $T(E, \varphi)$ is not irreducible, it is isomorphic to an orthomodular lattice of the form $T_1 \times T_2$ where T_1 and T_2 are of heights 1 and 2, hence are modular. It follows that $T(E, \varphi)$ is itself modular, hence φ is anisotropic, and it is well known that, in this classical case, $T(E, \varphi) = L(E, \varphi)$ is irreducible, which is a contradiction.

3. ON THE SUB-ORTHOMODULAR LATTICES OF $T(E, \varphi)$

Let *K'* be a subfield of *K*. By definition, an orthogonal basis $e = (e_1, e_2, e_3)$ of *E* is said to be *K*'-closed if there exists $\alpha \in K$, $\alpha \neq 0$, such that, for $i = 1, 2, 3$, $\alpha Q(e_i) \in K'.$

Under these conditions, if E' is the K' -subspace of E (i.e., the linear subspace of E when E is regarded as a vector space over K') generated by the basis e , and φ' is the restriction to $E' \times E'$ of $\alpha \varphi$, then φ' is a nonsingular symmetric bilinear form over E' , called the form induced by φ on E' (which is defined up to a constant factor in K').

Our main result is the following stucture Theorem about subalgebras of $T(E, \varphi)$.

Theorem 3.3.

1. *Direct part.*

Let K' *be a subfield of* K *and let* $e = (e_1, e_2, e_3)$ *be a* K' -closed *orthogonal basis of E.*

Let E' be the K' -subspace of E generated by e and let φ' be the *symmetric bilinear form induced by* φ *on E'*.

Then $T(E', \varphi')$ *is isomorphic to a subalgebra of* $T(E, \varphi)$ *.*

More precisely, the map which assigns to any M in $T(E', \varphi')$ *the Ksubspace of E generated by M is an injective homomorphism of orthomodular lattices from* $T(E', \varphi')$ *to* $T(E, \varphi)$ *.*

Moreover, we remark that $T(E', \varphi')$ *is irreducible and* 3-homogeneous.

2. *Converse part.*

Let T' *be an irreducible and* 3*-homogeneous subalgebra of* $T(E, \varphi)$ *. Then there exist:*

- *a subfield* K' *of* K ,
- *a K*'-closed orthogonal basis $e = (e_1, e_2, e_3)$ of *E* such that, if *E*' is the K' -subspace of E generated by e , and φ' the bilinear form induced by φ *on* E' , then T' is isomorphic to $T(E', \varphi')$.

Proof of the direct part: Let $\alpha \in K$, $\alpha \neq 0$, such that φ' is the restriction of $\alpha\varphi$ to $E' \times E'$, and let $h: L(E', \varphi') \mapsto L(E, \varphi)$ be the mapping which assigns to any $M \in L(E', \varphi')$ the *K*-subspace of *E* generated by *M*.

We notice that if M is the K' -subspace of E' generated by a list s of vectors, then $h(M)$ is the *K*-subspace of *E* generated by *s*. Now, let us suppose that *s* is a basis of *M*. Then *s* can be expanded to a basis $e' = (e'_1, e'_2, e'_3)$ of *E'*. The determinant of (e'_1, e'_2, e'_3) relative to the basis *e* of *E'* is nonzero, hence, as *e* is a basis of the *K*-space E , it follows that e' is also a basis of the *K*-space E . Thus, the vectors of s are linearly independent in E , hence s is a basis of the K -space *h*(*M*). This proves that *h* preserves the dimension, and also that $M = E' \cap h(M)$, which shows that *h* is one-to-one.

Let us denote respectively by \perp and \perp' the polarities of $L(E, \varphi)$ and $L(E', \varphi')$. Let $K'u$ be any atom of $L(E', \varphi')$, and let (v, w) be a basis of $(K'u)^{\perp'}$. Then (v, w) is a basis of the *K*-space $h((K'u)^{\perp})$. Since *v*, *w* belong to $(Ku)^{\perp}$, whose dimension is 2, and are independent vectors of *E*, (v, w) is a basis of $(Ku)^{\perp}$, and we conclude that $h((K'u)^{\perp'}) = (Ku)^{\perp} = (h(K'u))^{\perp}$. It follows easily that, for any $M ∈ L(E', φ'), h(M^{⊥'}) = (h(M))[⊥].$

An easy consequence of the definition of *h* is that, for any $M, N \in L(E', \varphi')$, $h(M + N) = h(M) + h(N)$, and, by the de Morgan laws, we infer that *h* is a lattice homomorphism from $L(E', \varphi')$ to $L(E, \varphi)$.

It is obvious that for any atom $K'u$ of $L(E', \varphi')$, $K'u$ is isotropic iff $h(K'u) =$ *Ku* is an isotropic atom of $L(E, \varphi)$. It follows that, for any $M \in L(E', \varphi'), h(M)$ is isotropic iff *M* is isotropic, and in particular that, for any $M \in T(E', \varphi')$, $h(M) \in$ $T(E, \varphi)$.

Let *g* be the mapping from $T(E', \varphi')$ to $T(E, \varphi)$ defined by $g(M) = h(M)$.

If $M, N \in T(E', \varphi')$, then $M + N$ is an isotropic subspace of E' iff $h(M +$ N) = $h(M) + h(N) = g(M) + g(N)$ is an isotropic subspace of *E*. It follows

that $g(M \vee N) = g(M) \vee g(N)$ (the l.u.b. being taken resp. in $T(E', \varphi')$ and in $T(E, \varphi)$), and, by the de Morgan laws, that *g* is an (injective) homomorphism of orthomodular lattices from $T(E', \varphi')$ to $T(E, \varphi)$.

Remarks

- 1. The converse part of Theorem 2 is much more long and difficult to prove. In its proof we use:
	- the coordinatization Theorem for Arguesian projective planes,
	- the distance between an atom and a block of an orthomodular lattice,
	- the algebraic closure *K*[∗] of *K* and the embedding of the *K*-space *E* into a 3-dimensional K^* -space E^* equipped with a bilinear form φ^* inducing φ on E .
	- classical methods of projective geometry.
- 2. If T' satisfies the hypothesis of the converse part, the following sentences are equivalent:
	- a) T' is a modular lattice
	- b) the bilinear form φ' is anisotropic
	- c) *T'* is a sublattice of $L(E, \varphi)$.

For example, these conditions are satisfied in the case where K is the field C of complex numbers, $E = \mathbb{C}^3$, $\varphi((x, y, z), (x', y', z')) = xx' + yy' + zz'$, *K'* is the field of real numbers, $E' = \mathbf{R}^3$, and φ' is the restriction of φ to *E'*. In this case, φ is not anisotropic, thus $T(E, \varphi)$ is nonmodular, but φ' is anisotropic, hence $T(E', \varphi')$ is modular.

3. Theorem 2 does not work if the field *K* is of characteristic 3.

Indeed, if $K = F_3$ (the 3-element field), and $E = F_3^3$ then $T(E, \varphi)$ does not depend (up to isomorphism) on the choice of the nonsingular bilinear form φ . The Greechie diagram of this orthomodular lattice is given in Fig. 1. The black atoms in this diagram, and the three blocks containing these atoms constitute the diagram of a proper, irreducible, 3-homogeneous

Fig. 1.

sub-orthomodular lattice of $T(E, \varphi)$, which is not associated to a subfield of K .

4. MINIMAL ORTHOMODULAR LATTICES

We recall that a nonmodular orthomodular lattice *L* is called minimal if all its proper subalgebras are either modular or isomorphic to *L*. If *L* is finite, this is equivalent to saying that all the proper subalgebras of *L* are modular. Recall that a main interest of minimality comes from the fact that a finite orthomodular lattice *T* is minimal if and only if the equational class generated by *T* covers an equational class of the form $[M \text{ on}],$ for some $n \geq 2$ (where $[M \text{ on}]$ denotes the equational class generated by the finite orthocomplemented modular lattice *Mon*).

Theorem 2 provides infinitely many finite minimal orthomodular lattices, and an infinite one.

1. Let us suppose that *K* is finite. It is well known that the cardinality *q* of *K* is of the form $q = p^n$, where *p* is a prime number. Here the conditions on the characteristic of *K* show that $p \neq 2$ and $p \neq 3$.

If *E* is a 3-dimensional vector space over *K*, if φ_1 , φ_2 are any two nonsingular forms on E , and if Q_1 , Q_2 are respectively the corresponding quadratic forms, then there exists α in *K* such that Q_1 and αQ_2 are equivalent.

This implies that orthomodular lattices $T(E, \varphi_1)$ and $T(E, \varphi_2)$ are isomorphic. Hence, up to isomorphism, the orthomodular lattice $T(E, \varphi)$ depends only on the cardinality of *K*.

Moreover, it is easy to see that the previous result (concerning φ_1) and φ_2) allows us, for any subfield *K'* of *K*, to get a *K'*-closed orthogonal basis. It follows that the three following sentences are equivalent:

a) $T(E, \varphi)$ is minimal,

b) $n = 1$,

c) *q* is a prime number.

and that, up to isomorphism, the minimal orthomodular lattice $T(E, \varphi)$ depend only on the cardinality of *K*.

So, we obtain, for each prime integer $p \geq 5$ a finite minimal orthomodular lattice T_p . This completes the study presented with Richard Greechie in Liptovsky Jan (Carrega *et al*., 2000), where we had obtained these lattices only in the case where *p* is of the form $4k + 3$.

2. As concern the fields of characteristic 2, it is still possible to construct, by a slightly different way, the orthomodular lattice $T(E, \varphi)$, and we have already obtained in this way (Carrega (1998)) infinitely many finite minimal orthomodular lattices from finite fields of cardinal 2^p , where $p = 1$

or *p* is a prime number. We have in preparation a structure Theorem in characteristic 2, similar to Theorem 2 above.

3. If *K* is the field **Q** of rational numbers, and $E = \mathbf{Q}^3$, the orthomodular lattice $T(E, \varphi)$ does not depend (up to isomorphism) on the choice of the nonsingular and nonanisotropic form φ . This orthomodular lattice is infinite and, as **Q** is a prime field, $T(E, \varphi)$ is minimal.

REFERENCES

- Carrega, J. C. (1998). Coverings of [*Mon*] and minimal orthomodular lattices. *International Journal of Theoretical Physics* **37**, 1.
- Carrega, J. C., Greechie, R. J. and Mayet, R. (2000). Minimal orthomodular lattices from quadratic spaces over finite fields. *International Journal of Theoretical Physics* **39**, 3.
- Flachsmeyer, J. (1995). Orthomodular posets of idempotents, *International Journal of Theoretical Physics* **34**, 8.